46 JOURNAL .OF CHROMATOGRAPHY

THE ROLE OF LATERAL DIFFUSION AS A RATE-CONTROLLING
MECHANISM IN CHROMATOGRAPHY

J. CALVIN GIDDINGS
Department of Chemistry, University of Utalh, Salt Lake City, Utah (U.S.A.)

(Received May :'.nd, 1960)

A great number of kinetic and diffusion processes influence the resolution obtainable
in chromatographic separations. These processes serve to establish local nonequi-
librium?* within the column or paper and consequently smear individual zonmes.
The effect increases as the processes become slower. A first step in improving resolution
has followed the basic understanding of the role of these processes as established
by GLUEcCKAUFr2, THoMASs?, and many others. Until recently, however, no method
was available for understanding the role of complex processes involving more than
one, or at most two, steps. The basis of the method to be used here for diffusion-
controlled processes was evolved for use with complex reaction schemes composed
of many simultaneous single-step reactions!. Application has been made to adsorption
chromatography in which the surface is heterogeneous and consists of » different
kinds of sites, consecutive reactions (this being an approximation to simultaneous
partition and adsorption), the sorption of large molecules, and the simultaneous
occurrence of chemical reaction and sorption in chromatography?. The solutions
obtained by this method are exactly valid only at infinite time, a characteristic
which they share with the VAN DEEMTER?, GoLAYS, and other equations. Fortunately,
in chromatography, the equations which apply strictly only at infinite times are
usually excellent approximations during most of the running time of an experiment.

As a special case of this method applied to diffusion-controlled processes, results
have already been calculaced for the effects of bending chromatographic columns”.
In this case lateral diffusion across the column is the important controlling process.
The tubewise nonequilibrium found in that case is in contrast to the nonequilibrium
extending over only one or so particle diameters as discussed here.

THEORY

The flow of the mobile phase fluid in chromatography is responsible for establishing
nonequilibrium by continually bringing new fluid with varying solute concentration
into contact with the fixed bed and its associated stagnant layers. The sorption and
desorption processes are opposing this trend by leveling off the concentration excesses
and deficiencies. If these processes are rapid, and it is one of the goals in chromatog-
raphy to make them so, they succeed in establishing a condition with very little
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LATERAL DIFFUSION IN CHROMATOGRAPHY 47

departure from equilibrium soon after a run begins. The nonequilibrium discussed
here is always local nonequilibrium, especially that established between mobile
stationary phases due to the above processes. This is in contrast to the nonequilibrium
always associated with gross concentration gradients such as found in chromato-
graphic zones and boundaries. Assuming simple geometries, the nonequilibrium is
established laterally with respect to the flow direction, but with complex media the
nonequilibrium is more complicated. Nevertheless the word “lateral” will be used
in describing this nonequilibrium and the diffusion acting against it.

If attention is centered on a small volume element in the chromatogram with
its coordinates fixed to the stationary support, it can be established that the con-
centration changes in that element due to three potential sources; the flow of new
material directly into the element (operative in the mobile phase only), the longitudinal
diffusion into the element due to the gross concentration gradients, and the flux of
material due to local nonequilibrium. The equation for these changes in phase 7 is

om; omg 2my
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(1)
where z is the net flow direction, ¢ the time, #; the concentration in that phase, Ds
the diffusion coefficient of the solute in phase ¢, and v; the velocity of phase 7 at that
point. The velocity, of course, must be written as a function of the lateral coordinates
since it may vary from point to point across the channel as with parabolic flow. The
rate of solute accumulation per unit volume due to local nonequilibrium is designated
as s;. If one assumes the departure from equilibrium to be small, the derivatives of
the actual concentration #2; can be replaced by the derivatives of the equilibrium
concenfration, #m;*. Thus s; can be written to a good approximation as
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The first term on the right-hand side can be replaced by the following, provided we
again assume conditions near to equilibrium

o * _omy* mi
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where A ;7 is the fraction of the cross sectional area occupied by phase 7, and the summa-
tions extend over all phases. The average downstream velocity of the solute molecules
is 2. This equation can be substituted back into eqn. (2). It can be shown, however,
that the longitudinal diffusion terms appearing at the end of both eqns. (2) and (3)
are ordinarily negligiblel. Furthermore the two terms tend to cancel one another
when the equations are combined. In fact when all values of D; are equal, the combined
term vanishes altogether. We are thus able to write

. _ Omg* '
s; = (vi — ) . (4)
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48 J. C. GIDDINGS

An alternate expression for s; can be written in terms of the ‘‘lateral’”” diffusional
transport which it represents (diffusional processes, only, are considered in this paper):

s¢ = D2 (5)

where the Laplacian operator F2-is to be applied only to local, and not to gross,
concentration gradients. The equations are simplified by defining the equilibrium
departure term, &, by the equation

my = my™ (1 + &) (6)

Rewriting eqn. (5), and keeping in mind the fact that #z;* is the local equilibrium
concentration and is thus locally invariant, we have

s¢ = m* DV 3%; (7)
Eliminating s; between eqns. (4) and (), we have

1 @lnec
V"E[ = (’U; — ’Ll) _-l—)—i '—a—z’—— (8)

where ¢ is the overall concentration in terms of a unit volume containing a pro-
portionate amount of all the phases. The differential dln m,* has been replaced by
oln ¢ since m* is proportional to ¢ for the linear equilibrium considered here.

A major part of the chromatographic problem is solved if a solution for & can
be obtained as a function of the coordinates for each phase 7. Eqn. (8) is, mathematical-
ly, the well known Poisson’s equation, a fact which may be of some use in obtaining
solutions to some complex problems. The solutions must be compatible with certain
boundary conditions related to the geometry and physical characteristics of the
system. The principle types of boundary conditions applying to eqn. (8) are as follows.

(1) The condition that my* results from the local equilibration of all concentra-
tions s; in the column, :id therefore the integral of #2;* over the total cross sectional
area is equal to the integral of m; over the area. The difference between the terms,
m¢*e, must integrate to zero, % Jme*eidA = o. '

(2) The boundary condition at a non-connecting interface (an interface across
which no mafceriél flux is possible), d¢;/0x = o.

(3) The boundary condition expressing the equality of fluxes at a connecting’
interface, Dy (0e¢/0x) = D;Ky; (05/0x), where Ky; is the partition coefficient, ms*/neg*.

(4) The cond1t1on expressmg equilibrium at an interface (this is usually appli-
cable), & = &;.

(5) Symmetry conditions, which generally lead to expressions of the form
Oe¢/0x = o when applied to the center of a symmetrical channel or to the center of
a spherical ion exchange bead, etc.

The local nonequilibrium, described above, is responsible for the smearing of
zones following the equations of diffusion. The development of this idea is analogous
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to that used previously?, but is summarized here because the equations must be
rewritten when the rate-controlling processes are diffusional.
The flux of material through a unit area normal to the flow direction is given by

= %;m, vid Ay (9)

Using eqn. (6) this rearranges to

= 2fmyrv; dA; + 25 my*ewidAdy (10)
P i

where the first term on the right-hand side represents the mean convective drift
of the zone and the second term on the right-hand side is responsible for zone dis-
persion and can be equated to —D.dc/0z.

—

Ej'm.g wepvdA
[

Do = — dcloz (I'I)

Since the & terms, obtained from the integration of eqn. (8), are proportional to
dlnc/oz, D, becomes a diffusion coefficient independent of position and the overall
concentration, and proportional to the velocity squared. This coefficient is to be
added to the coefficients of ordinary molecular diffusion and eddy diffusion. These
terms contribute directly to the flux and when multiplied by the negative of the
concentration gradient can, if desired, be added directly on to eqn. (9) as a starting
point.

The calculated results for zone spreading can be expressed either in terms of
diffusion or plate height. The contribution to plate height due to nonequilibrium
effects is H,= 2D.;/u. The method outlined above is a very general method for
obtaining plate height expressions which can be applied to several special cases now
in the literature in addition to numerous other practical cases. Some of these will
now be calculated by way of illustration.

CALCULATIONS

Most of the -useful models employed in connection with chromatography consist of
just two phases a fluid mobile phase and a fixed stationary phase. While diffusion
through these phases is often regarded as the rate- -controlling process for mass
transfer, it is likely that many actual cases also involve a contribution from single-
step reactions. This has been investigated in ion-exchange chromatography, but not
in gas and paper chromatography. In the latter cases adsorption, simultaneously
with the partitioning process, must often occur in a manner that increases plate
height. The methods used in previous papers!:4 must be employed to account for
single-step reactions of this kind.

The model used to represent the complex geometry of the fixed support and the
interstitial fluid is open to some choice, and will ordinarily vary with the kind of
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50 J. C. GIDDINGS

support chosen. The fixed support in ion-exchange chromatography is usually con-
sidered to comsist of spherical beads, and in gas chromatography, a liquid film of
uniform thickness. Randomly oriented cylindrical fibers may be assumed in this
role in paper chromatography. The interstitial space, for which order of magnitude
estimations are made, is usually not equated to a geometrical model. A model is
quite important here, however, since the occurrence of a flow pattern that is essentially
parabolic determines the rate-controlling process at high R values. The parabolic
nature of laminar flow must consequently be considered in this region. The method
used here can easily be applied to a number of simple models, with and without
parabolic flow. It is possible to extend the calculations to more complicated models,
as shown below, by using a liquid film of variable thickness for gas chromatography.
It is anticipated that very realistic results can be obtained by numerical methods
applied to a three-dimensional, periodic-lattice model of the fixed phase.

Sationary film of uniform thickness

In this case diffusion in the mobile phase (phase 1) will be considered to be very
rapid, and ¢, will therefore be constant. The geometry of the mobile phase is immaterial
in this case. The stationary film is of thickness d,. Applying eqn. (8) to this phase

we obtain . _
d2e2 2w 2lnc

ax2 Ds oz (12)

where x is the distance through the film. Integrating with respect to x we get

ux2 @lnc
aDs 0Oz

-+ go2¥ + g1z (13)

&y =

where g4, and g,, are integration constants. The type (1) boundary condition, con-
sidering the fact that ¢, is constant, appears as

egdx (14-)

e14d1 = —

KAs fd,

ds o

where K is the partition coefficient K,, = (m,*/m,*). The type (2) boundary condition
requires that de,/0x must equal zero at the non-connecting interface, x = d,. The
type (4) boundary condition requires that the constant e; must equal e, at ¥ = 0;
£, == &15. These three are sufficient to determine the three constants, &, gy and g;a.
Only &, is required in the integral in eqn. (1I); &, is multiplied by the velocity v, = o,
and hence drops out. The constant ¢, is

I Kitds?2 01ln ¢ As
= 3Dz 0z Ay 4+ KAs

(x,5)

Using this in the integral of eqn. (11)

mi*A1&1 d,
De = —-—————-——-———-f ndx
¢ dycodlncfoz Jo e ‘ (l(?)
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. . 702 o2
we obtain D= %Re(, — R)o? ’_5_ He = 2R(1 — R)v‘,ZL v (17)

win

where v is the average mobile phase velocity given by (% (v,dx)/d,; R is the ratio
of zone to mobile phase velocity, #/v, and is given by R==A4,/(4, + A5 K); m,*/c
is given by R/4,; and K is obtained from the expression for R as K = A4,(1—R)/A.R.
These expressions will be used in subsequent sections also.

Homogeneous spheres

Again we assume that diffusion in the mobile phase is rapid enough to eliminate
lateral concentration gradients in that phase. Consequently each part of the bead’s
spherical surface will be bathed at the same concentration level. This introduces
spherical symmetry into the problem, and we can write eqn. (8) as

1 @ 2 Oe2 Rv é@lnec (18)
— — 4 s T e— — I
v2 or or Ds @z
integration with respect to » gives
Ruv2 d1lnc 8oz
= "Dy e v T8 (19)

Boundary conditions of type (1), type (4), and type (5) are applied to evaluate the
constants e,, gy2, and g,,. The value of ¢, is

RoKbB2 2lnc As
& = — (20)
1502 gz A1 + KAs .

where & is the radius of the bead. When used in connection with eqn. (xx), this
equation leads to

I o 9 b2 — 2, . b2
De = 3R — Ry &, He = 53 R(1 — Rjv = (21)
Cylindrical vods )

Diffusion into cylindrical paper fibers in paper chromatography must proceed by
means of a tortuous path, following the amorphous pathways between the crystalline
regions of the fiber. Due to the obstructions the diffusion coefficient is reduced. Since
the amorphous and crystalline regions are apparently small compared to the fiber
diameter, the diffusion equation still applies. The reasonable assumption is made
that the fiber length is great enough to neglect longitudinal gradients in the fiber.
Diffusion in the mobile phase is again assumed to be comparatively rapid. '

Eqn. (8), written in cylindrical coordinates with the above assumptions, appears as

1 0
—_— L D e 22
ol (22)
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This equation integrates to

Rur2 @lnec
4D2 0z

n
[ &)

+ goz In v + g1 | (

EQ = —

The constant &, is obtained with the application of type (1), (4), and (5) boundary
conditions
RyKb2 alnc Ao

&1 = T 8D 2z A, + KAz (24)

where b is the cylinder radius. Use of eqn. (24) with eqn. (11) gives

b2

B2
D¢ = gR(1 — R)v? —, H; =

R(1 — R).v — ) (25)

(]
ENTS
[ &)

Pores of nonuniform depth

In gas chromatography liquid solvent covers rough granular particles and forms a
film of nonuniform thickness. The following calculation reveals the nature of the
influence of these small, closely spaced heterogeneous regions. Our model calls for
n—1I pores (each considered to be a different phase) of uniform cross section throughout
their length and liquid depth 4;, and each occupying a respective fraction A; of the
total column cross section (or volume). The mobile phase, in which diffusion is assumed
to be rapid, is phase 1 whereas the liquid-filled pores are phases 2 through #. For each
pore we have, using eqn. (8) '
8%y PRy élnc

ox2 Do oz

(26)

where x is the distance of penetration into the pore and D,, as previously, is the
diffusion coefficient in the stationary phase. This integrates to

Rva2 9ln ¢

Sl ye + gotx¥ + gu (27)
The type (1) boundary condition appears as
n A d -
ad; = — K 3 22 [Tedr (28)
t=2 dg J o /

The type (2) boundary condition applies at depth d; and gives

Rvd; olnc
" Do oz

8ot =
The type (4) boundary condition gives

&1 = g1t (30)
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These equations can be solved for &,, eliminating the integration:constants

§/3
> A d;2
KRudlnc >" e

£ = — (31)
Do o 2
3Pz % L+ KA,

This equation is analogous to eqn. (15) for a uniform film. Substituting into eqn. (11)

and rearranging, we have
o 2/1 i(li'l
o

De = LR2(1 — R)u2 —g—
¢ 3 (1 v DzzAi (32)

where the summations run from 2 to #. The ratio of summations is simply the mean
square depth, 42, averaged over cross-sectional area, or, equivalently, over the total
liquid content. It is not the ordinary mean square pore depth as illustrated by the
following calculation. If we are considering just two pores of equal radius, and one
twice as deep as the other (4 and 2%4), the ordinary mean square pore depth is 542 2,
but the proper mean square depth is 342. '

Substituting @2 into eqn. (32), we have

CIpae e & _2p0 a

Dy = —5R (.I R)v Dy’ He = SR(I R)v D, (33)
These equations are of the same form as eqgn. (17). The introduction of a nonuniform
film does not greatly complicate the picture, but does lead to a different interpretation
of the film thickness. A similar simplicity has been found to exist with adsorption

chromatography on heterogeneous surfaces?.

MOBILE PHASE

Calculations for the mobile phase proceed in much the same manner as for the
stationary phase. The problem is more complicated, however, for two reasons. First,
the geometry is usually more complex as illustrated by comparing the interstitial
space with the individual spherical beads in an ion exchange column. Second, the
fluid motion in the interstitial space is complicated by viscous forces. For simple
geometries, ¢.e., circular cross sections or flow between parallel faces, the fluid motion
is parabolic. It is reasonable to assume that flow of a basically similar type (parabolic)
occurs in more complex interstices. Beyond this, the understanding of the non-
equilibrium in complex interstitial spaces will probably not be much advanced until
numerical solutions to the Navier-Stokes equation and then to eqn. (8) are obtained
for some reasonable two and three dimensional lattices. Until then we can only
assume the basic correctness of the simpler models.

The prcblem arising when diffusion in both phases is partially controlling is
also important. The contributions to D, and H, add*, as will be shown, for some

* Additive terms are those coptribufing a fixed amount to the plate height irrespective of the
rate (diffusion coefficient) in the other phase (sece eqn. (49)).

J. Chromatog., 5 (1961) 46-60



54 J. C. GIDDINGS

simple geometries. It is questionable if the terms are additive for complex geometries
as found in chromatographic columns. This premise is supported by calculations on
a model, to be presented shortly.

Mobzle-phase fluid with constant thickness and velocity

The simplest assumption for the mobile phase is flow at constant velocity between
parallel faces each covered with a stationary partitioning layer. The constant velocity
pattern is being used here primarily for comparison with the parabolic profile to be
evaluated next. Rapid diffusion is assumed for the stationary phase. The calculations
proceed in the same way as shown for the stationary film of uniform thickness.
We obtain

d12 ” 12
R(1 — R)2v2 —— He = 2(1 — R)% Dll

(34)

where 2d, is the distance between the faces and D, is the diffusion coefficient of solute
molecules in the mobile phase. A comparison with eqn. (17) shows a symmetry in
D such that one is converted into the other if the mobile phase quantities R, 4,, and
D,, are exchanged with (1 — R), d, and D,. No such symmetry is exhibited by H,.

Mobile fluid with constant thickness and parabolic velocity
Laminar flow between parallel faces a distance 2d; apart occurs with a velocity

v (1 — f—) (35)

v = -
d1?

wiw

where x is the distance from the center and v, as before, is the average mobile phase
velocity. Substituting eqn. (35) into eqn. (8), we obtain

o2%¢e1 v @lnc 3 \ 3x2
e _ v B\ ] _
ox Dy, oz [(2 ) 2d,? (36)

-]

Integration with respect to x gives

v ©@lnc x4
= 3 __ R) a__
&= 2D, ez [(2 * 4d12]

“+ goix¥ - g1 (37)

Application of type (1), (4) and (5) boundary conditions to this gives

v &dlnc a4 d1? :
- 3 R 2 2 2.

oL 2Dy ez [( R) 305 goOR: — 108 + 75) | (34)
Eqns. (35) and (38) are substituted into eqn. (x1) yielding an equation similar to
eqn. (16), emcept that the term ¢, is under the integral sign. Evaluation of the integral
leads to

d,2 2 d)?
D =£R(Rz 12 5L, L7 ( 2p 51) i
c 3 R + = v R2 — 35 v

35)"" D; D1 (39)
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These expressions differ from those in eqn. (34), especially at R values approaching
unity. An expression equivalent to eqn. (39) has been derived by GorLay for capillary
columnss$,

Mobile fluid with circular cross section and constant velocity

This problem proceeds along the same lines as the diffusion into cylindrical rods. The

results are

_ 702 702
Do = §R(1 — R)%2 2, He = (1 — R) &- (40)

where 7, is the tube radius. If R and (r — R) areinterchanged, this D.becomesidentical
in form to the one in eqn. (25).

Mobile fluid with civcular cross section and parabolic velocity

This case is analogous to parabolic flow between paraltel faces: The important equa-

tions are
1’-

71 = 2V (x —;(;:) (41)

1.8 (0e1) v &lnc zy2

e =2 2 — R) — ]
v O 4 er Dy, oz [( 702 (42)

v dlnc rd ro?
N e — Ryt ——— " ap2__ 10R ]

&= B a2 — B — 5 — T (3R — 10R + 9) (43)

These equations take the place of eqns. (35), (36) and (38) for flow between parallel
faces. The effective diffusion coefficient and plate height expressions are

2]
-

(6R--——— 1I6R + 11)v 111 (44)

| o
De =,,,:1%R(6R2—- 16R + n)v'z_D—"l, H, =

NIH

This expression for plate height is equivalent to one derived earher for the influence
of lateral diffusion in capillary columnsS.

The results obtained above for both stationary and mobile phases are summarized
in Table I.

TWO OR MORE RATE PROCESSES

The method outlined above can be applied when two or more lateral diffusion processes
influence the plate height. However, as already indicated, the calculations become
excessively difficult for realistic models of packed columns. It is necessary to choose
simple models that still exhibit some of the principle characteristics of the chromato-
graphic nonequilibrium. When dealing with two phases, it is not possible to choose
a model for each of the phases independently. It is unreasonable to assemble 2 model
that is geometrically incompatible. Thus one would not assume cylindrical rods for
the stationary phase and tubes of circular cross section for the mobile phii=: since
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TABLE I
THE CONTRIBUTION OF VARIOUS GEOMETRIES AND FLOW PATTERNS TO THE PLATE HEIGHT

[

Rate-controlling diffusion process Plate height, H o
Stationary phase
Dy = <0, geometry irrelevant o
Flat film of uniform thickness d, E:;'-]{’(I — R)v Dz-
2
Homogeneous spheres of radius b %R( 1 — R)v %
Cylirdrical rods of radius b -‘TIR(I — R)v ]b;
Pores of nonuniform depth (mean square depth @2) ::;-R(I — R)v g_
Mobile phase
D, = 0, geometry irrelevant o
‘ 12
Constant velocity and thickness 2d, : %(1 — R)2y Dl
. 1
S N dq?
Parabolic velocity and constant thickness 2d, ?'-(R2 —L22r 4+ i£>11 —1—
' 3 ] 5/ Dy
02
Constant velocity in circular tube of radius »#, i(x — R)2p ]—;—
1
I ro2

(6R? — 16R + 11)v

Parabolic velocity in circular tube of radius #,

24 Dy

these two geometries are incompatible. The question as to whether all the terms
for the stationary phase in Table I are additive to all the terms for the mobile phase
when both processes are rate-controlling is meaningless since many of the geometries
are incompatible. One cannot tell if the two terms are additive for ah ion exchange
column of spherical beads since no one has evaluated the nonequilibrium in the
interstitial space. Previous assumptions to this effect are unjustified. Hence many
of the results in Table I are useful only if the process referred to is rate-controlling.
More will be said about rate-controlling processes in the next section.

Simple models, such as flat, adjacent mobile and stationary phases of constant
thickness, can be easily evaluated. These models should reveal the nature of some
of the processes in real columns. The method will be illustrated by a simple model
in which fluid of thickness 2d; flows with constant velocity between plates each
possessing a retentive layer of thickness d,. Integration of eqn. (8) for each phase gives

i .
"v(l — Rx2olnc

& = 2D; 52 -+ go1x + g1 (452)
__vRa%dlnc " ) » b
2 = 2Ds 52 go2% -+ g12 (45Db)

In order to evaluate any or all of the constants, g4;, g11, go2» and g,, four boundary
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conditions are used: types (1), (2), (4), and (5) are most easily applied. From these,
¢, is obtained as :

dlnc 42— di® Rdi2 Rds?
= — R . . .
&1 = o1 ) % [ 2D, ' 3D: 3D2] (46)
and, with the help of eqn. (x1)
d12 I dﬂz
De =1 — R)22 22 4 Ipery
e 3R(l Ry D; + 3R (r R)v? Ds (47)

These two expressions are the sum of the respective contributions from eqns. (17)
and (34). It can similarly be shown that H, and D, are composed of additive terms if
the flow is parabolic. GoLAY has obtained the latter result, and also finds gas and
liquid diffusion terms additive in capillary columns of circular cross section®.

In packed chromatographic columns the interstitial space is complicated by
the presence of pockets and fissures extending into the support. The diffusion into
these' will compete with diffusion through the stationary phase to the same general
area. That this destroys the additive make-up of plate-height expressions can be
shown by the followmg model, which, while not entirely realistic, does allow for the
competition between diffusion in the two phases in getting solute to remote areas
of the stationary phase (the high symmetry of the previous cases has disallowed this).
Our model consists of deep (depth 4,) narrow pores, alternate ones filled with the
mobile phase. These pores each terminate at the boundary of the flat channel oécupied
by moving fluid. For mathematical convenience it will be assumed that solute
exchanges freely back and forth between the pores, and that the pores are sufficiently
narrow to prevent any ‘‘sideways’ nonequilibrium from developing. The relative
pore volumes occupied by mobile and stationary phases are a, and a, respectively.
An analysis of this case leads to the following result

2 2, d12 1 + aids Kaso + al
e =30 — w0 o [(509) ()]

(48)

+ S R(1 — R)v

do? [(Kag -+ al) (Kang -+ ang)]
KasDs + a1D;

win

0

where R now equals (d; + @,d,)/(d, + @@, + a;Kd,). The terms in brackets are
corrections to eqn. (47). As ¢, and a, approach zero and unity, respectively, the bracket-
ed terms approach unity in value. Eqn. (48) is no longer additive in the sensc that
the kinetics in each phase are responsible for a single term to be added to give He.
Thus the equality

H(Di, Dg) = H¢(Di1, ©) -+ He(co, D2) (49)
is no longer true.

RATE-CONTROLLING PROCESSES

Even though the plate height is not always an additive quantity, an approximate
evaluation of the relative importance of the two diffusion processes in the two phases
can be obtained by comparing the separate contributions.
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Using Table I, and assuming the mobile phase to have parabolic flow between
parallel faces, we find the relative contnbutlon to H; due to the stationary and
mobile phases as

H, (stat) R(1 — R)re — T2 v (50)
H, {mob) (R2 I’.’.R " is_ - T1 .
"3

where 7, and 7, are approximate diffusional relaxation times in the two media;
T, = d,?/D, and 7, = d2/D, if the nonuniform pore model is being used. It is im-
portant to note that the above ratio can be strongly influenced by » as well as the
ratio of relaxation times. The quantity » goes to zero as R approaches both zero and
one. The limit at R = 1 is caused entirely by parabolic flow since if we assume
constant flow velocity with the same geometry, we have

H, (stat) . R 9
1 He(mob) 1 —R

‘This ratio goes to infinity at R = 1. It is clear that it is absolutely necessary to con-
sider the parabolic nature of flow in evaluating the rate-controlling processes at
high R values. This result is due to the ability of parabolic flow to cause a dispersion
by itself even if absorption is absent. Eqn. (50) must be considered as a reasonably
good approximation for actual columns, reflecting the basic nature of viscous ﬁow
The ratio » and R/(x — R) are compared in Fig. 1.
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Fig. 1. Relative value of the plate height of the statiohary phase to the plate height of the mobile
phase for uniform flow (upper curve) and parabolic flow (lower curve).

TABLE OF SYMBOLS

Aq fraction of cross sectional area occupied by phase 7.

a,, as relative pore volumes occupied by mobile and stationary phases.
b - radius of spherical bead and of rod. '

c overall concentration, with all phases included.

d, one half the distance between parallel faces.
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ds thickness of the stationary film.

d? mean square pore depth averaged over cross sectional area, eqn. (32).

Dy diffusion coefficient of solute in phase <.

D, nonequilibrium contribution to the diffusion coefficient describing zone
spreading. ‘

&¢ equilibrium departure term for phase 7, eqn. (6).

802, €tc. integration constants (see eqn. (13)).

H, nonequilibrium contribution to plate height.

Ky partition coefficient, #m;*/m*.

K partition coefficient, my*/me *.

my concentration in phase 7.

my* concentration in phase ¢ under conditions of local equilibrium.

q material flux for unit area and time.

R ratio of zone to mobile phase \}elocity, %n/v.

¥ distance from center of spheres, rods, circular tubes (see also eqn. (50)).

St incoming flux due to lateral diffusion in phase ¢.

¢ time.

T1, Ts diffusional relaxation times, d,2/D, and d2/D,.

u average downstream velocity of solute molecules.

Vg local downstream velocity in phase <.

v average downstream velocity of mobile phase.

x lateral (or local) coordinate.

z longitudinal coordinate.
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SUMMARY

A general method is outlined for calculating lateral nonequilibrium when the rate-
controlling steps involve lateral diffusion only. The nonequilibrium is responsible
for a contribution to the diffusion, or to the plate height, of a zone in a column. The
latter is easily calculated from the nonequilibrium. The stationary phase models
chosgen for calculation include a flat film of uniform thickness, homogeneous spheres,
cylindrical rods and pores of nonuniform depth. These models are useful in describing
gas, ion exchange and paper chromatography. Mobile phase models include uniform
and parabolic flow; both between parallel faces and in circular tubes.

The role of two simultaneous diffusion processes is considered, and the conditions
under which these contribute additive terms are discussed. Examples of both additive
and nonadditive cases are shown. Finally, the rate-controlling influences of stationary
phase and mobile phase diffusion are compared. The importance of parabolic flow, in
contrast to uniform flow, is shown at R values near unity.
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