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A great number of kinetic and diffusion processes influence the resolution obtainable 
in chromatographic separations. These processes serve to establish local nonequi- 
libriuml within the column or paper and consequently smear individual zones. 
The effect increases as the processes become slower. A first step in improving resolution 
has followed the basic understanding of the role of these processes as established 
by GLUECKAUF~, THOBIAS~, and many others. Until recently, however, no method 
was available for understanding the role of complex processes involving more than 
one, or at most two, steps. The basis of the method to be used here for diffusion- 
controlled processes was evolved for use with complex reaction schemes composed 
of many simultaneous single-step reactions 1. Application has been made to adsorption 
chromatography in which the surface is heterogeneous and consists of +z different 
kinds of sites, consecutive reactions (this being an approximation to simultaneous 
partition and adsorption), the sorption of large molecules, and the simultaneous 
occurrence of chemical reaction and sorption in chromatography”. The solutions 
obtained by this method are esactly valid only at iniinite time, a characteristic 
which they share with the VAN DEEMTER G, GOLAY", and other equations. Fortunately, 
in chromatography, the equations which apply strictly only at infinite times are 
usually excellent approximations during most of the running time of an experiment. 

As a special case of this method applied to diffusion-controlled processes, results 
have already been calculated for the effects of bending chromatographic columns;. 
In this case lateral diffusion across the column is the important controlling process. 
The tubewise nonequilibrium found in that case is in contrast to the nonequilibrium 
estending over only one or so particle diameters as discussed here. 

THEORY 

The flow of the mobile phase fluid in chromatography is responsible for establishing 
nonequilibrium by continually bringing new fluid with varying solute concentration 
into contact with the fixed bed and its associated stagnant layers. The sorption and 
desorption processes‘are opposing this trend by leveling off the concentration excesses 
and deficiencies. If these processes are rapid, and it is one of the goals in chromatog- 
raphy to make them so, they succeed in establishing a condition with very little 
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departure from equilibrium soon after a, run begins. The nonequilibrium discussed 
here is always local nonequilibrium, especially that established between mobile 
stationary phases due to the above processes. This is in contrast to the nonequilibrium 
always associated with gross concentration gradients such as found in chromato- 
graphic zones and boundaries. Assuming simple geometries, the nonequilibrium is 
establis’hed ,laterally with respect to the flow direction, but with complex media the 
nonequilibrium is more complicated. Nevertheless the word “lateral” will be used 
in describing this nonequilibrium and the diffusion acting against it. 

If attention is centered on a small volume element in the chromatogram with 
its coordinates fised to the stationary support, it can be established that the con- 
centration changes in that element due to three potential sources; the flow of new 
material directly into the element (operative in the mobile phase only), the longitudinal 
diffusion into the element due to the gross concentration gradients, and the flus of 
material due to local nonequilibrium. The equation for these changes in phase i is 

where z is the net flow direction, t the time, ml the concentration in that phase, Dr 
the diffusion coefficient of the solute in phase i, and vi the velocity of phase ?: at that 
point. The velocity, of course, must be written as a function of the lateral coordinates 
since it may vary from point to point across the channel as with parabolic flow. The 
rate of solute accumulation per unit volume due to local nonequilibrium is designated 
a< ~1. If one assumes the departure from equilibrium to be small, the derivatives of 
the actual concentration mt can be replaced by the derivatives of .the equilibrium 
concen&-ation, WZ~*. Thus sf can be written to a good approximation as 

ami* Srni * 
~i=~ +w~--DI~ (2) 

The first term on the right-hand side can be replaced by the following, provided we 
again assume conditions near to equilibrium . . 

where A$ is the fraction of the crosssectional area occupied by phase j, and the summa- 
tions estend over all phases. The average downstream ,velocity of the solute molecules 
is zl. .This equation can be substituted back into eqn. (2). It can be shown, however, 
that the longitudinal diffusion terms appearing at the end of both eqns. (2) and (3) 
are ordinarily negligiblel. Furthermore the two terms tend to cancel one another 
when the equations are combined. In fact when all values of Di are equal, the combined 
term vanishes altogether. We are thus able to write 

ami* 
Si = (id - 3) -- 

a.2 
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-4n alternate expression for si can be written in terms of the “lateral” diffusiona 
transport which it represents (diffusional processes, only, are considered in this paper) : 

si = DIPnzs (5) 

where the Laplacian operator F’Ws to be applied only to local, and not to gross, 
concentration gradients. The equations are simplified by defining the equilibrium 
departure term, et, by the equation 

Rewriting eqn. (5), and keeping in mind the fact that nzi* is the local equilibrium 
concentration and is thus locally invariant, we have 

Eliminating ss between eqns. (4) and (7), we have 

I a1nc 
vn,.l = (UC - 5) 5 --&-- 

i 
(8) 

where c is the overall concentration in terms of a unit volume containing a pro- 
portionate amount of all the phases. The differential aln PYZ(* has been replaced by 
aln c since’mt* is proportional to c fo- I the linear equilibrium considered here. 

A major part of the chromatographic problem is solved if a solution for ei can 
be obtained as a function of the coordinates for each phase i. Eqn. (S) is, mathematical- 
ly, the well known Poisson’s equation, a fact which may be of some use in obtaining 
solutions to some complex problems. The solutions must be compatible with certain 
boundary conditions related to the geometry and physical characteristics of the 
system. The principle types of boundary conditions applying to eqn. (8) are as’ follows. 

(I) The condition t?!at W&S* results from the local equilibration of all concentra- 
tions ~22 in the column, ;,r:.I:d therefore the integral of ml* over the total cross sectional 
area is equal to the kt.., choral of rni over the area. The difference between the terms, 
?nt*s, must integrate to zero, ~J’m~*e~dA~ = o. 

(2) The boundary condition at a non-connecting interface (an interface across . . . . . . 
which no material flux is possible), a&t/& = o. 

(3) The boundary condition expressing the equality of fluxes at a connecting’ 
interface, Da (i3et/Ek) = DjKtj (3q/&s); where Ktj is the partition coefficient, mj*/mi*. 

(4) The condition expressing equilibrium at an interface (this is usually appli- 
cable), et = EJ. 

(5) Symmetry conditions, which generally lead to expressions of the form 
a@x = o when applied to the center of a symmetrical channel or to the center of 
a spherical ion exchange bead, etc. 

The local nonequilibrium, described above, is responsible for the smearing of 
zones following the equations of diffusion. The development of this idea is analogous 
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to that used previously l, but is summarized here because the equations must be 
rewritten when the rate-controlling processes are diffusional. 

The flux of material through a unit area normal to the flow direction is given by 

Using eqn. (6) this rearranges to 

where the first 
of the zone and 
persion and can 

--/- 

(10) 

term on the right-hand side represents the mean convective drift 
the second term on the right-hand side is responsible for zone dis- 
be equated to -D.&z/&. 

Since the &i terms, obtained from the integration of eqn. (S), are proportional to 
alnc/&, DC becomes a diffusion coefficient independent of position and the overall 
concentration, and proportional to the velocity squared. This coefficient is to be 
added to, the coefficients of ordinary molecular diffusion and eddy diffusion. These 
terms contribute directly to the flux and when multiplied by the negative of the 
concentration gradient can, if desired, be added directly on to eqn. (9) as a starting 
point. 

The calculated results for zone spreading can be expressed either in terms of 
diffusion or plate height. The contribution to plate height due to nonequilibrium 
effects is H, = zD,/ii. The method outlined above is a very general method for 
obtaining plate height expressions which can be applied to several special cases now 
in the literature in addition to numerous other practical cases. Some of these will 
now be calculated by way of illustration. 

CALCULATIONS 

Most of the -useful models employed in connection with chromatography consist of 
just two phases ; a fluid mobile phase and a fixed stationary phase. While diffusion 
through these phases is often regarded as the rate-controlling process for mass 
transfer, it is likely that many actual cases also involve a contribution from single- 
step reactions. This has been investigated in ion-exchange chromatography, but not 
in gas and paper chromatography. In the latter cases adsorption, simultaneously 
with the partitioning process, must often occur in a manner that increases plate 
height. The methods used in previous papers194 must be employed to account for 
single-step reactions of this kind. 

The model used to represent the complex geometry of the fised support and the 
interstitial fluid is open to some choice, and will ordinarily vary with the kind of 

J. Chvouzalop., 5 (1961) 46-60 



50 J.C. GIDDINGS 

support chosen. The fixed support in ion-exchange chromatography is usually con- 
sidered to consist of spherical beads, and in gas chromatography, a liquid film of 
uniform thickness. Randomly oriented cylindrical fibers may be assumed in this 
role in paper chromatography. The interstitial space, for which order of magnitude 
estimations are made, is usually not equated to a geometrical model. A model is 
quite important here, however, since the occurrence of a flow pattern that is essentially 
parabolic determines the rate-controlling process at high R values. The parabolic 
nature of laminar flow must consequently be considered in this region. The method 
used here can easily be applied to a number of simple models, with and without 
parabolic flow. It is possible to extend the calculations to more complicated models, 
as shown below, by using a liquid film of variable thickness for gas chromatography. 
It is anticipated that very realistic results can be obtained by numerical methods 
applied to a three-dimensional, periodic-lattice model of the fixed phase. 

Sation.ary filnz of unifornz thickness 

In this case diffusion in the mobile phase (phase I) will be considered to be very 
rapid, and or will therefore be constant. The geometry of the mobile phase is immaterial 
in this case. The stationary film is of thickness d,. Applying eqn. (8) to this phase 
we obtain 

anez 5% a111c -_=----_ 
as DC a.2 (12) 

where x is the distance through the film. Integrating with respect to x we get 

?;iaG a In c 
eg=--- 

2D3 a2 -I- gozx f a2 (13) 

where go2 and g,, are integration constants. The type (I) boundary condition, con- 
sidering the fact that el is constant, appears as 

KA 2 

&IA1 = - - s d2 

d2 0 
E&f (14) 

where K is the partition coefficient K1, = (mz*/ml*). The type (2) boundary condition 
requires that as,/& must equal zero at the non-connecting interface, x = d,. The 
type (4) boundary condition requires that the constant e1 must equal c2 at x = o ; 

El = glz. These three are sufficient to determine the three constants, el, g,z and g,,. 
Only el. is required in the integral in eqn. (II) ; Ed is multiplied by the velocity v2 = o, 
and hence drops out. The constant cl is 

-KG&” alnc As E> Zd.6 
3D2 a2 -41 + K.42 

-. 

Using this in the integral of eqn. (II) 

DC = - 
LIMA 1~1 d, 

dl ca In c/a2 f 
vldx 

0 

(15) 

(16) 
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we obtain nL = ;I?“( I 
czg 

- R)?P D--’ 
w 

51 

where ZI is the average mobile phase velocity given by s,“r (v,dx)/d,; R is the ratio 
of zone to mobile phase velocity, Z/Y, and is given by R = A,/(A, + A B K) ; ml*/c 

is given by R/A 1; and K is obtained from the expression for R as K = A l(~-R)/A 2R. 

These expressions will be used in subsequent sections also. 

Again we assume that diffusion in the mobile phase is rapid enough to eliminate 
lateral concentration gradients in that phase. Consequently each part of the bead’s 
spherical surface will be bathed at the same concentration level. This introduces 
spherical symmetry into the problem, and we can write eqn. (8) as 

I a aas Rv a In c -- y3-=--_ 
YP ar ar D2 ?LZ 

(18) 

integration with respect to Y gives 

Rzw2 a In c 
&2=----_ 

6Da a.2 y + g12 (19) 

Boundary conditions of type (I), type (L+), and type (5) are applied to evaluate the 
constants cl, go2, and g,,. The value of &I is 

where b is the radius 
equation leads to 

D, = 

Cylindrical rods 

RvK@ alnc A2 
El = - 

rgD:! i3z -41 + KA2 
(20) 

of the bead. When used in connection with eqn. (II), this 

b2 
&Rz(, - R)ve -, 

D2 
NC = &R(I -R)v g (21) 

. 

Diffusion into cylindrical paper fibers in paper chromatography must proceed by 
means of a tortuous path, following the amorphous pathways between the crystalline 
regions of the fiber. Due to the obstructi.ons the diffusion coefficient is reduced. Since 
the amorphous. and crystalline regions are apparently small compared to the fiber 
diameter, the diffusion equation still applies. The reasonable assumption is made 
that the fiber length is great enough to neglkct longitudinal gradients in the fiber. 
Diffusion in the mobile phase is again assumed to be comparatively rapid. 

Eqn. (8)) written in cylindrical coordinates with the above assumptions, appears as 

I a ac2 Rv E3lnc 
-ay--_--_ 
rar zw !De & 

(22) 
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The constant 
conditions 

Rvra a In c 
Es=-- - + go2 ln 1’ + g12 4D2 a2 (2s) 

&I is obtained with the application of type (I), (4), and (5) boundary 

RvKY a In c A3 
El = - 

802 az A 1 -t_ KA; (24) 

where b is the cylinder radius. Use of eqn. (24) with eqn. (IX) gives 

Pores of nommifown de$th 

In gas chromatography liquid solvent covers rough granular particles and forms a 
film of nonuniform thickness. The following calculation reveals the nature of the 
influence of these small, closely spaced heterogeneous regions. Our model calls for 
n- I pores (each considered to be a different phase) of uniform cross section throughout 
their length and liquid depth di, and each occupying a respective fraction Ax of the 
total column cross section (or volume). The mobile phase, in which diffusion is assumed 
to be rapid, is phase I whereas the liquid-filled pores are phases 2 through n. For each 
pore we have, using eqn. (S) 

aO&i 
-= 
8x2 

where x is the distance of penetration 

Xv alnc --- 
DZ a2 (16) 

into the pore and D,, as previously, is the 
diffusion coefficient in the stationary phase. This integrates to 

Rv& a 111 c .Q=--- 
2DQ 

7 + gorx + g1.t (27) 

T.he type (I) boundary condition appears as 

n A i 
&1&=-.K~-- s ll( 

cc:! dr 
E&v 1 

0 /” 

The type (2) boundary condition applies at depth de and gives 

Rv& a In c 
got = --g- --gy 

I 

The type (4) boundary condition gives 

(18) 

(29) 

El = g1c (30) 
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These equations can be solved for E,, eliminating the integration constants 

gA&" 
KRvi3ln c 2 

El = -----_--_ 
3Da a2 (31) 

This equation is analogous to eqn. (15) for a uniform film. Substituting into eqn. (II) 

and rearranging, we have 
CA QCL7.12 

D, = $R”-(I - X)v” 5x7 (3”) 3 i 

where the summations run from 2 to m. The ratio of summations is simply the mean 
square depth, d2, averaged over cross-sectional area, or, equivalently, over the total 
liquid content. It is not the ordinary mean square pore depth as illustrated by the 
following calculation. If we are considering just two pores of equal radius, and one 
twice as deep as the other (F, and 2Jz), the ordinary mean square pore depth is 5/9/z, 
but the proper mean square depth is 312”. 
Substituting d3 into eqn. (32), we have 

(33) 

These equations are of the same form as eqn. (17). The introduction of a nonuniform 
film does not greatly complicate the picture, but does lead to a different interpretation 
of the film thickness. A similar simplicity has been found to esist with adsorption 
chromatography on heterogeneous surfaces4. 

MOBILE PHASE 

Calculations for the mobile phase proceed, in much the same manner as for the 
stationary phase. The problem is more complicated, however, for two reasons. First, 
the geometry is usually more complex as illustrated by comparing the interstitial 
space with the individual spherical beads in an ion exchange column. Second, the 
fluid motion in the interstitial space is complicated by viscous forces. For simple 
geometries, i.e., circular cross sections or flow between parallel faces, the fluid motion 
is parabolic. It is reasonable to assume that flow of a basically similar type (parabolic) 
occurs in more complex interstices. Beyond this, the understanding of the non- 
equilibrium in complex interstitial spaces will probably not be much advanced until 
numerical solutions to the Navier-Stokes equation and then to eqn. (8) are obtained 
for some reasonable two and three dimensional lattices. Until then we can only 
assume the basic correctness of the simpler models. 

The problem arising when diffusion in both phases is partially controlling is 
also important. The contributions’ to DC and Hc add*, as will be shown, for some 

* Additive terms are those contributing a fisccl armlint to the plate heighti irrespective of the 
rate (diffusion coeFIicient) *in the ‘other phase (see eqn. (49)). 
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simple geometries. It is questionable if the terms are additive for complex geometries 
as found in chromatographic columns. This premise is supported by calculations on 
a model, to be presented shortly. 

Mobile-$Aase fluid with comtant thickness and velocity 

The simplest assumption for the mobile phase is flow at constant velocity between 
parallel faces each covered with a stationary partitioning layer. The constant velocity 
pattern is being used here primarily for comparison with the parabolic profile to be 
evaluated nest. Rapid diffusion is assumed for the stationary phase. The calculations 
proceed in the same way as shown for the stationary film of uniform thickness. 
We obtain 

(34) 

where zd, is the distance between the faces and D, is the diffusion coefficient of solute 
molecules in the mobile phase. A comparison with eqn. (17) shows a symmetry in 
DC such that one is converted into the other if the mobile phase quantities R, d& and 
D,, are exchanged with (I - R), d, and D,. No such symmetry is exhibited by H,. 

Mobile fluid with constant thickness and @araboh velocity 

Laminar flow between parallel faces a distance zd, apart occurs with a velocity 

.,=$v(*--g) (35) 

where 3~ is the distance from the center and V, as before, is the average mobile phase 
velocity. Substituting eqn. (35) into eqn. (S), we obtain 

a”E1 -=- 
ad 

;la+[(;_Rj_~] . (36) 

Integration with’ respect to x gives 

El = -&T [(;-R)r?-&] i- go13 + g11 

Application of type (I), (4) and (5) boundary conditions to this gives 

(37) 

a = ~a~[$-li)rl----_~qORI- ro81P + 75)] (34) 

Eqns. (35) and (38) are substituted into eqn. (II) yielding an equation similar to 
eqn. (r6)eexcept that the term el is under the integral sign. Evaluation of the integral 
leads to’ 
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These espressions differ from those in eqn. (34), especially at R values approaching 
unity. An expression equivalent to eqn. (39) has been derived by GOLAY for capillary 
column.+. 

Adobile &id with circular cross section and constant velocity 

This problem proceeds along the same lines as the diffusion into cylindrical rods. The 

(40) 

where Y, is the tube radius. If R and (I - R) are interchanged, this D, becomes identical 
in form to the one in eqn. (25). 

Mobile fluid with circular cross section and $araboZic velocity 

This case is analogous to parabolic flow between parallel faces; The important equa- 
tions are 

vl= ..(, -2) 

I a @El) -_ 
Y ar 

Y-=&a+[(di?)_$] 
ar 

u alnc + 
El=-- 

401 a c (2 - jq@ - - 
2Y$ 

-T (3s - IOR + g)] 

(41) 

(43) 

These equations take. the place of eqns. (35), (36) and (38) for flow between parallel 
faces. The effective_ diffusion coefficient and plate height expressions are 

. 
2 

DC =..-$Ji?(6R2 - 16R + I I)@ %, & (6R2 - 
2 

iYc = 16R + II)V 2 
D1 

(44) 

This expression for plate height is equivalent to one derived earlier for the influence 
of lateral diffusion in capillary columnsa. 

The results obtained above for both stationary and mobile phases are summarized 
in Table I. 

TWO OR MORE RATE PROCESSES 

The method outlined above can be applied when two or more lateral diffusion processes 
influence the plate height. However, as already indicated, the calculations become 
excessively difficult for realistic models of packed columns. It is necessary to choose 
simple models that still exhibit some of the principle characteristics of the chromato- 
graphic nonequilibrium. When dealing with two phases, it is not possible to choose 
a model for each of the phases independently. It is unreasonable to assemble a m.odel 
that is geometrically incompatible. Thus one would not assume cylindrical rc::!.s for 
the stationary phase and tubes of circular cross section for the mobile ph:i.-.t: since 

. . . 
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TABLE I 

THE CONTRIBUTION OF VARIOUS GEOMETRIES AND FLOW PATTERNS TO THE PLATE HXIGHT 

Aule-cotrtrollitrg diffusion proc~‘ss Plntc Jteigltt, Ff C 

Stationary Phase 

D, = co, geometry irrelevant 

Flat film of uniform thickness d, 

Homogeneous spheres of radius 21 

Cylirzdrical rods of radius /.I 

Pores of nonuniform depth (mean square depth 3) 

Mobile pItuse 

Dl = co, geometry irrelevant 

Constant velocity and thickness I’d* 

Parabolic velocity and constant thickness 2,d, 

Constant velocity in circular tube of radius Y,, 

Parabolic velocity in circular tube of radius yO 

these two geometries are incompatible. The question as to whether all the terms 
for the stationary phase in Table I are additive to all the terms for the mobile phase 
when both processes are rate-controlling is meaningless since many of the geometries 
are incompatible. One cannot tell if the two terms are additive for dn ion exchange 
column of spherical beads since no one has evaluated the nonequilibrium in the 
interstitial space. Previous assumptions to this effect are unjustified. Hence many 
of the results in Table I are useful only if the process referred to is rate-controlling. 
More will be said about rate-controlling processes in the nest section. 

Simple models, such as flat, adjacent mobile and stationary phases of constant 
thickness, can be easily evaluated. These models should reveal, the nature of some 
of the processes in real columns. The method will be illustrated by a simple model 
in which fluid of thickness xZ, flows with constant velocity between plates each 
possessing a retentive layer of thickness d,. Integration of ecln. (S) for each phase gives 

. + 

-‘?J(I 
El = 

- qxa a 111 c 

2Dl 
x- + go1.v + g11 (45a) 

In order to evaluate any or all of the constants, gel, gllr goBI and gLa, four boundary 
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conditions are used: types (I), (z), (4), and (5) are most easily applied. From these, 
e 1 is obtained as 

a In c 
El = ‘u(1 -2?) - 

a2 C 
X2 - d12 

zD1 
+ 

R&2 l&i22 --- 
3D1 3D2 I 

and, with the help of eqn. (II) 

D, = ;R’ I - J+2 g + p(I - qJz Dq 
_ 

(4.W 

(47) 

These two expressions are the sum of the respective contributions from eqns. (17) 
and (34). It can similarly be shown that IIc and DC are composed of additive terms if 
the flow is parabolic. GOLAY has obtained the latter result, and also finds gas and 
liquid diffusion terms additive in capillary columns of circular cross sectione. 

In packed chromatographic columns the interstitial space is complicated by 
the presence of pockets and fissures extending into the support. The diffusion into 
these,‘will compete with diffusion through the stationary phase to the same general 
area. That this destroys the additive make-up of plate-height expressions can be 
shown by the following model, which, while not entirely realistic, does allow for the 
competition between diffusion in the two phases in getting solute to remote areas 
of the stationary phase (the high symmetry of the previous cases has disallowed this). 
Our model con&ts of deep (depth dd narrow pores, alternate ones filled with the 
mobile phase. These pores each terminate at the boundary of the flat channel occupied 
by moving fluid. For mathematical convenience it will be assumed that ,solute 
exchanges freely back and forth between the pores, and that the pores are sufficiently 
narro’iit to prevent any “sideways” nonequilibrium from developing. The relative 
pore volumes occupied by mobile and stationary phases are aI and a, respectively. 
An analysis of this case leads to the following result 

dl + a& - 
dl >( h’a.2 + a1 -- 

a& 

Ka2D2 + alD2 

Ka2D2 + al% >I 
where R now equals (d, + a,d,)/(d, + a1d, + a,Kd,). The terms in brackets are 
corrections to eqn. (47). As a, and a2 approach zero and unity, respectively, the bracket- 
ed terms approach unity in value. Eqn. (48) is no longer additive in the sense that 
the kinetics in each phase are responsible for a single term to be added to give H,. 

Thus the equality 

is no longer true. 

H,(Dl, 02) = H&h, ~0) + Hc(~, D2) 

RATE-CONTROLLING PROCESSES 

(49) 

Even though the plate height is not always an additive quantity, an approximate 
evaluation of the relative importance of the two diffusion processes in the two phases 
can be obtained by comparing the separate contributions. 
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Using Table I, and assuming the mobile phase to have parabolic flow between 
parallel faces, we find the relati.ve contribution to H, due to the stationary and 
mobile phases as 

WC (stat) a(1 - Jqt2 r2 

W, (mob)= 

( 

=$f-- 
R2 _ 12 

5_R-+&l 
> 

+1 
. (50) 

where z1 and zg are approximate diffusional relaxation times in the two media: 

t1 = d12JD1 and r2 = B/D, if the nonuniform pore model is being used. It is im- 
portant to note that the above ratio can be strongly influenced by Y as well as the 
ratio of relaxation times. The quantity r goes to zero as R approaches both zero and 
one. The limit at R = I is caused entirely by parabolic flow since if we assume 
constant flow velocity with the same geometry, we have 

H, (stat) R zg 

!H,(mob)= I --Rx (51) 

This ratio goes to infinity at R’= I. It iA clear that it is absolutely necessary to con- 
sider ‘the parabolic nature of flow in evaluating the rate-controlling processes at 
high R values. This result is due to the ability of parabolic flow to cause a dispersion 
by itself even if absorption is absent. Eqn. (50) must be considered as a reasonably 
good approsimatipn for actual columns, reflecting the basic nature of viscous flow. 
The ratio r and R/(1 - R) are compared in Fig. I. 

Fig. I, Relative value of the plate height of the stationary phase to the plate height of the mobile 
phase for uniform flow (upper curve) and parabolic flow (lower curve). 

TABLE OF SYMBOLS 

4 fraction of cross sectional area occupied by phase i. 

;1’ 
a2 relative pore volumes occupied by mobile and stationary phases. 

radius of spherical bead.and of rod. 
overall concentration, with all phases included. 
one half the distance between parallel faces. 
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thickness of the stationary film. 
me,an square pore depth averaged over cross sectional area, eqn., (32). 
diffusion coefficient of solute in phase i. 
nonequilibrium contribution to the diffusion coefficient describing zone 
spreading. 
equilibrium departure term for phase i, eqn. (6). 
integration constants (see eqn. (13)). 
nonequilibrium contribution to plate height. 
partition coefficient, mj*/ma*. 
partition coefficient, ma*/m,*. 
concentration in phase i. 
concentration in phase i under conditions of local equilibrium. 
material flux for unit area and time. 
ratio of zone to mobile phase velocity, G/v. 
distance from center of spheres, rods, circular tubes (see also eqn. (50)). 
incoming flux due to lateral diffusion in phase i. 
time. 
diffusional relaxation times, d,“/.D, ,and z/II,. 
average downstream velocity of solute molecules. 
local downstream velocity in ,phase i. 
average downstream velocity of mobile phase. 
lateral (or local) coordinate. 
longitudinal coordinate. 
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SUMMARY 

A general method is outlined for calculating lateral nonequilibrium when the rate- 
controlling steps involve lateral diffusion only. The nonequihbrium is responsible 
for a contribution to the diffusion, or to the plate height, of a zone in a column. The 
latter is easily calculated from the nonequilibrium. The stationary phase models 
chosen for calculation include a Aat film of uniform thickness, homogeneous spheres, 
cylindrical rods and pores of nonuniform depth. These models are useful in describing 
gas, ion exchange and paper chromatography. Mobile phase models include uniform 
and parabolic flow; both between parallel faces and in circular tubes. 

The role of two simultaneous diffusion processes is considered, and the conditions 
under which these contribute additive terms are discussed. Examples of both additive 
and nonadditive cases are shown. Finally, the rate-controlling influences of stationary 
phase and mobile phase diffusion are compared. The importance of parabolic flow, in 
contrast to uniform flow, -is shown at I$ values near unity. 
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